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Historical Katrina Data

When the Levees Broke: Adding Socioeconomic 
Dimensionality to Flood Risk Predictive Modeling

Since 1980, tropical storms have accounted for $945.9 billion in damages. Due to 
climate change, the frequency of stronger, more destructive tropical storms has 
continued to increase . Additionally, climate change has caused an increase in 
storms that rapidly intensify just before landfall, making it difficult for 
communities to adequately prepare for an approaching storm.
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Predictive Model

By looking at how Hurricane Katrina impacted Louisiana, this model examines the 
factors by zip code and considers local socioeconomic data, FIMA flood claims 
data and NFHL flood risk data.

Instead of just analyzing geographical flood risk factors, we also analyze areas in Louisiana through socioeconomic and 
demographic statistics. By doing so, we predicted which areas will be heavily impacted in future storms, identifying areas with 

disproportionately poor infrastructure along the way (e.g. the Lower Ninth Ward).

Dashboard Highlights

Highlights
• Our approach uniquely considers socioeconomic data alongside geographical risk to develop a better 

picture for flood risk prediction during large storms. We considered Louisiana during Hurricane Katrina. 

• Our artificial neural network and XGBoost-based models achieve accuracies of 86%, as well as 
identifying chronically underinvested areas like the Lower Ninth Ward.

• Our predictive models can better support the management and design of coastal infrastructure to 
minimize damage caused by tropical storms in Louisiana.Sathya Edamadaka, Marie-Claire Traore, Will Walker, Kristen Ray

Preliminary Modeling

Figure 3. We initially applied a variety of simpler modeling 
techniques to our dataset—a number of linear regression 
methods achieved high accuracy, while more complicated 
naive bayesian and random forest classifiers performed poorly.

Figure 1. NFIP Flood count data, normalized by 
population density

Figure 2. NFHL Flood risk factors

Context

Data

Data cleaning (dropping 
null rows), feature 

engineering 
(oversampling, labeling)

Artificial Neural Network and XGBoost Modeling

Figure 8. Data dashboard representing eXtreme Gradient Boosting (XGBoost) 
and Artificial Neural Network (ANN) predictive models, developed with Google 
Data Studio

Oversampling Method

Figure 4. Original risk category distribution— very little data for all non-
low risk categories

Figure 5. Final, oversampled data. Mean household income & population 
density shown as examples

Borderline 
SMOTE

# 
Fe

at
ur

es
: 1

4

on
e-

ho
t S

iz
e:

 5

...
...

...

...

...
...

Figure 6. Accuracy plot for ANN—an accuracy score of 5 
is a perfect guess, and 0 is completely wrong, as shown 
in the accuracy score formula:

Figure 7. Accuracy plot for XGBoost, using the same 
metric as before. It’s interesting to note that this model 
is wrong in different places than the ANN, and is either 
absolutely correct or very wrong in the majority of LA zip 
codes.

K-Nearest Neighbors Modeling

84% Accuracy, F1-score, 
Recall, and Precision

If you’re interested, here are some model 
specifics: weights were updated with Adam 
optimization. Rectifying linear unit was used for 
our activation function. We used a constant 
learning rate of 10-5. We found two hidden layer 
structures that were highly accurate and that 
didn’t overfit: (41, 31,41, 21,  51) and (91, 71, 81).

87% Accuracy, F1-score, 
Recall, and Precision

Here’s a truncated version of the 
XGBoost decision tree. It’s based off of
making a series of decisions, informed 
by previous iterations of the algorithm. 
It’s more accurate than ANN but the 
magnitude of its errors are larger.

Figure 9. This is a 2D plot of the most highly 
weighted variables, population density and 
mean household income, after training the 14-
dimensional kNN model. The important thing 
to take away here is that this diagram is not 
simple— as a result, we had to utilize the 
above, nonlinear methods for analysis.

Conclusion

By taking socioeconomic and demographic factors into account, 
our models highlight that factors other than geographical features 
can be used to determine the likelihood of flooding in a region hit by 
a tropical storm. We hope our results can be used to inform 
infrastructure planning in cities to reduce the impact of natural 
disasters, guiding future investment and planning. 
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Accuracy plot for ANN—an accuracy score of 5 is a perfect 
guess, and 0 is completely wrong. Please notice that the 
Lower 9th Ward was guessed correctly.

Accuracy plot for XGBoost, using the same metric as 
before. It’s interesting to note that this model is wrong in 
different places than the ANN, and is either absolutely 
correct or very wrong in the majority of LA zip codes.

Artificial Neural Network:
84% Accuracy. 

This model mostly used Density, Median 
Household Income, Proportion of Population 

Who’s Black, and Geographical Risk.

XGBoost-Based Model:
87% Accuracy. 

The model mostly used Density, Total 
Population, and Bachelor’s Rate, much 

different than the ANN.


