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Is Your Hospital Bamboozling You?
Helping Patients Shop for Medical Care in Michigan

Although hospital pricing is weakly correlated to a set of key demographic and hospital variables,
demographic data provides insights into the discrepancies of the uneven distribution of healthcare
resources in Michigan.

Future policy efforts should focus on enforcing the price transparency law, standardizing hospital
pricing data, and improving the ability of patients to use this information.
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costs for various procedures; this tool will reduce their
financial burdens and empower them to take a proactive
approach with their health.

To provide an analysis on the variability of hospital
pricing based on demographic and hospital statistics.

Figure 2: Michigan Hospital Pricing Overview
With selected procedures (by CPT code), we started with a pricing comparison of
different hospitals and systems.
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I Figure 3: Correlation Matrix
We plotted a correlation matrix to
better understand the interactions

between variables. Figure 6: Interactive Dashboard

Our patient dashboard allows users to compare prices across hospitals. Based on
the pricing information (original prices, predicted prices, and price indexes), they can
determine which hospital to choose for their respective procedures.
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Data Sourcing and Cleaning
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accuracy after optimization (66% baseline) after using the random search and grid search
methodology.

and to compare the prices of all selected procedures within their residential
area.



